x^2-5x=1+10-5x

Simple and best practice solution for x^2-5x=1+10-5x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2-5x=1+10-5x equation:



x^2-5x=1+10-5x
We move all terms to the left:
x^2-5x-(1+10-5x)=0
We add all the numbers together, and all the variables
x^2-5x-(-5x+11)=0
We get rid of parentheses
x^2-5x+5x-11=0
We add all the numbers together, and all the variables
x^2-11=0
a = 1; b = 0; c = -11;
Δ = b2-4ac
Δ = 02-4·1·(-11)
Δ = 44
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{44}=\sqrt{4*11}=\sqrt{4}*\sqrt{11}=2\sqrt{11}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{11}}{2*1}=\frac{0-2\sqrt{11}}{2} =-\frac{2\sqrt{11}}{2} =-\sqrt{11} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{11}}{2*1}=\frac{0+2\sqrt{11}}{2} =\frac{2\sqrt{11}}{2} =\sqrt{11} $

See similar equations:

| 1=p/3 | | 65y=8(8y+11) | | 1.23x=11.07 | | 4(11x+10)=44x-3 | | (q-2)(q-8)=0 | | -84=-12(k-5) | | x+0.1x=60000 | | x-0.1x=60000 | | 0=2y^2+6y | | 5+3(x)=x-2 | | 65y=8(8y=11) | | (4m-6)/6=-2/3 | | 108/5x+2=144/7x | | 3-3=16x+15x | | 49=6t-13t | | 4(x+3)=9x-10 | | 2u−1=5 | | (5y-6.6)/8=4.8 | | 4x2-8=x(2+3x) | | x-(4.5-x)=1.5 | | c+-2=-13 | | 3x-5=250 | | 2=1/4v | | (3m+6)/4=33 | | 40*5^x-2=200 | | 2m-21=19 | | –24+12d=2d–28 | | -3(-1+n)-2n=-6(n-2) | | 4p=-5p-9/3 | | 2x-6x-5=-5(x-20) | | X2=9(x-2) | | x/4-10=3/8 |

Equations solver categories